Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions
نویسندگان
چکیده
MR41B-2101. 31H. Gomi, K. Ohta, K. Hirose, S. Labrosse, R. Caracas, M. J. Verstraete, and J. W. Hernlund, Japan Geoscience Union Meeting 2012, abstract SIT41-P14. 32G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996). 33P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 34G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 35Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, ibid. 46, 6671 (1992). 36D. Alfè, Comp. Phys. Comm. 118, 31 (1999). 37H. C. Andersen, J. Chem. Phys. 72, 2384 (1980). 38M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401 (2002). 39H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 40D. Alfè, M. Pozzo, and M. P. Desjarlais, Phys. Rev. B 85, 024102 (2012). 41C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996). 42G. V. Chester and A. Thellung, Proc. Phys. Soc. London 77, 1005 (1961). 43S. Mazevet, M. Torrent, V. Recoules, and F. Jollet, High En. Den. Phys. 6, 84 (2010). 44D. Alfè, G. D. Price, and M. J. Gillan, Phys. Rev. B 65, 165118 (2002). 45D. Alfè, Phys. Rev. B 79, 060101 (2009). 46D. Alfè, M. J. Gillan, and G. D. Price, Earth Planet Sci. Lett. 195, 91 (2002). 47A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981). 48G. Masters and D. Gubbins, Phys. Earth Planet Int. 140, 159 (2003). 49F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944); F. Birch, Phys. Rev. 71, 809 (1947). 50D. Alfè, G. D. Price, and M. J. Gillan, Phys. Earth. Planet. Int. 110, 191 (1999). 51M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids, (Clarendon Press, Oxford, 1987). 52D. Alfè and M. J. Gillan, Phys. Rev. Lett. 81, 5161 (1998). 53G. A. de Wijs, G. Kresse, L. Vočadlo, D. Dobson, D. Alfè, M. J. Gillan, and G. D. Price, Nature (London) 392, 805 (1998). 54D. Alfè, G. Kresse, and M. J. Gillan, Phys. Rev. B 61, 132 (2000). 55E. Knittle, R. Jeanloz, A. C. Mitchell, and W. J. Nellis, Solid State Commun. 59, 513 (1986). 56F. Nimmo, in Treatise of Geophysics, Vol. 9 (Elsevier, Amsterdam, 2007), p. 217. 57F. D. Stacey, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera (Springer, The Netherlands, 2007), p. 91. 58S. Labrosse, J.-P. Poirier, and J.-L. Le Moeul, Earth Planet. Sci. Lett. 190, 111 (2001). 59D. E. Loper, Geophys. J. Int. 54, 389 (1986). 60D. Gubbins, B. Sreenivasan, J. Mound, and S. Rost, Nature (london) 473, 361 (2011). 61R. Holme, in Treatise of Geophysics, Vol. 8 (Elsevier, Amsterdam, 2007), p. 107. 62D. Gubbins, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera (Springer, The Netherlands, 2007), p. 297.
منابع مشابه
Oxygen in the Earth’s core: a first principles study
First principles electronic structure calculations based on density functional theory have been used to study the thermodynamic, structural and transport properties of solid solutions and liquid alloys of iron and oxygen at Earth’s core conditions. Aims of the work are to determine the oxygen concentration needed to account for the inferred density in the outer core, to probe the stability of t...
متن کاملThermodynamics from first principles: temperature and composition of the Earth's core
We summarize the main ideas used to determine the thermodynamic properties of pure systems and binary alloys from first principles calculations. These are based on the ab initio calculations of free energies. As an application we present the study of iron and iron alloys under Earth’s core conditions. In particular, we report the whole melting curve of iron under these conditions, and we put co...
متن کاملProperties and Evolution of the Earth’s Core and Geodynamo
We review recent advances in the study of the Earth’s iron core, focusing on three areas: the properties of the core-forming materials, the manner in which core motions generate the Earth’s magnetic field (the dynamo), and the evolution of both the core and the dynamo. Ab initio computer simulations of the behaviour of iron alloys under core conditions suggest that the inner (solid) and outer (...
متن کاملConstraints frommaterial properties on the dynamics and evolution of Earth’s core
The Earth’s magnetic field is powered by energy supplied by the slow cooling and freezing of the liquid iron core. E orts to determine the thermal and chemical history of the core have been hindered by poor knowledge of the properties of liquid iron alloys at the extreme pressures and temperatures that exist in the core. This obstacle is now being overcome by high-pressure experiments and advan...
متن کاملElectrical and thermal transport properties of iron and iron-silicon alloy at high pressure
[1] The efficiency of heat transfer by conduction in the Earth’s core controls the dynamics of convection and limits the power available for the geodynamo. We have measured the room temperature electrical resistivity of iron and iron-silicon alloy to 60GPa and present a new model of the resistivity at high pressures and temperatures relevant to the Earth’s core. The model is compared with avail...
متن کاملComposition of the low seismic velocity E layer at the top of Earth's core
Using ab initio simulations on Fe-Ni-S-C-O-Si liquids, we constrain the origin and composition of the low-velocity layer E0 at the top of Earth’s outer core. We find that increasing the concentration of any light element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013